Text Output¶
Besides providing dimensional analysis and units conversions, the library also tries hard to print any quantity in the most user-friendly way.
Note
The library does not provide a text output for quantity points, as printing just a number and a unit is not enough to adequately describe a quantity point. Often an additional postfix is required.
For example, the text output of 42 m
may mean many things and can also be confused with an output
of a regular quantity. On the other hand, printing 42 m AMSL
for altitudes above mean sea level is
a much better solution, but the library does not have enough information to print it that way by itself.
Derived unit symbols generation¶
Based on the provided definitions for base units, the library creates symbols for derived ones.
unit_symbol_formatting
¶
unit_symbol_formatting
is a data type describing the configuration of the symbol generation
algorithm. It contains three orthogonal fields, and each of them has a default value.
enum class text_encoding : std::int8_t {
unicode, // m³; µs
ascii, // m^3; us
default_encoding = unicode
};
enum class unit_symbol_solidus : std::int8_t {
one_denominator, // m/s; kg m⁻¹ s⁻¹
always, // m/s; kg/(m s)
never, // m s⁻¹; kg m⁻¹ s⁻¹
default_denominator = one_denominator
};
enum class unit_symbol_separator : std::int8_t {
space, // kg m²/s²
half_high_dot, // kg⋅m²/s² (valid only for unicode encoding)
default_separator = space
};
struct unit_symbol_formatting {
text_encoding encoding = text_encoding::default_encoding;
unit_symbol_solidus solidus = unit_symbol_solidus::default_denominator;
unit_symbol_separator separator = unit_symbol_separator::default_separator;
};
unit_symbol()
¶
Returns a std::string_view
with the symbol of a unit for the provided configuration:
template<unit_symbol_formatting fmt = unit_symbol_formatting{}, typename CharT = char, Unit U>
[[nodiscard]] consteval auto unit_symbol(U);
For example:
static_assert(unit_symbol<{.solidus = unit_symbol_solidus::never,
.separator = unit_symbol_separator::half_high_dot}>(kg * m / s2) == "kg⋅m⋅s⁻²");
Note
std::string_view
is returned only when C++23 is available. Otherwise, an instance of a
basic_fixed_string
is being returned.
unit_symbol_to()
¶
Inserts the generated unit symbol to the output text iterator at runtime based on the provided configuration.
template<typename CharT = char, std::output_iterator<CharT> Out, Unit U>
constexpr Out unit_symbol_to(Out out, U u, unit_symbol_formatting fmt = unit_symbol_formatting{});
For example:
std::string txt;
unit_symbol_to(std::back_inserter(txt), kg * m / s2,
{.solidus = unit_symbol_solidus::never, .separator = unit_symbol_separator::half_high_dot});
std::cout << txt << "\n";
The above prints:
Quantity text output¶
Customization point¶
The SI Brochure says:
SI Brochure
The numerical value always precedes the unit and a space is always used to separate the unit from
the number. ... The only exceptions to this rule are for the unit symbols for degree, minute and
second for plane angle, °
, ′
and ″
, respectively, for which no space is left between the
numerical value and the unit symbol.
To support the above, the library exposes space_before_unit_symbol
customization point. By default,
its value is true
for all the units, so the space between a number and a unit will be present in the
output text. To change this behavior, we have to provide a partial specialization for a specific unit:
Note
The above works only for the default formatting. In case we provide our own
format specification (e.g. std::format("{:%Q %q}", q)
), the library will always obey this
specification for all the units (no matter of what is the actual value of the
space_before_unit_symbol
customization point) and the separating space will always be present
in this case.
Output streams¶
Tip
The output streaming support is opt-in and can be enabled by including the <mp-units/ostream.h>
header file.
The easiest way to print a quantity is to provide its object to the output stream:
using namespace mp_units;
using namespace mp_units::si::unit_symbols;
using namespace mp_units::international::unit_symbols;
const QuantityOf<isq::speed> auto v1 = avg_speed(220. * km, 2 * h);
const QuantityOf<isq::speed> auto v2 = avg_speed(140. * mi, 2 * h);
std::cout << v1 << '\n'; // 110 km/h
std::cout << v2 << '\n'; // 70 mi/h
The text output will always print the value of a quantity typically followed by a space and then the symbol of a unit associated with this quantity.
Important: Don't assume a unit
Remember that when we deal with a quantity of an "unknown" (e.g. auto
) type, it is a good
practice to always convert the unit to the expected one
before passing it to the text output:
Output stream formatting¶
Only basic formatting can be applied for output streams. It includes control over width, fill, and alignment of the entire quantity and formatting of a quantity numerical value according to the general C++ rules:
std::cout << "|" << std::setw(10) << 123 * m << "|\n"; // | 123 m|
std::cout << "|" << std::setw(10) << std::left << 123 * m << "|\n"; // |123 m |
std::cout << "|" << std::setw(10) << std::setfill('*') << 123 * m << "|\n"; // |123 m*****|
std::format
¶
Tip
The text formatting facility support is opt-in and can be enabled by including the
<mp-units/format.h>
header file.
The mp-units library provides custom formatters for std::format
facility which allows
fine-grained control over what and how it is being printed in the text output.
Grammar¶
units-format-spec ::= [fill-and-align] [width] [units-specs]
units-specs ::= conversion-spec
units-specs conversion-spec
units-specs literal-char
literal-char ::= any character other than '{' or '}'
conversion-spec ::= '%' units-type
units-type ::= [units-rep-modifier] 'Q'
[units-unit-modifier] 'q'
units-rep-modifier ::= [sign] [#] [precision] [L] [units-rep-type]
units-rep-type ::= one of "aAbBdeEfFgGoxX"
units-unit-modifier ::= [units-text-encoding units-unit-symbol-denominator units-unit-symbol-separator]
units-text-encoding ::= one of "UA"
units-unit-symbol-solidus ::= one of "oan"
units-unit-symbol-separator ::= one of "sd"
In the above grammar:
fill-and-align
,width
,sign
,#
,precision
, andL
tokens, as well as the individual tokens ofunits-rep-type
are defined in the format.string.std chapter of the C++ standard specification,- tokens
Q
andq
ofunits-type
are described in the time.format chapter of the C++ standard specification, units-text-encoding
tokens specify the unit text encoding:U
(default) uses the Unicode symbols defined by the SI specification (e.g.m³
,µs
)A
token forces non-standard ASCII-only output (e.g.m^3
,us
)
units-unit-symbol-solidus
tokens specify how the division of units should look like:o
(default) outputs/
only when there is only one unit in the denominator, otherwise negative exponents are printed (e.g.m/s
,kg m⁻¹ s⁻¹
)a
always uses solidus (e.g.m/s
,kg/(m s)
)n
never prints solidus, which means that negative exponents are always used (e.g.m s⁻¹
,kg m⁻¹ s⁻¹
)
units-unit-symbol-separator
tokens specify how multiplied unit symbols should be separated:s
(default) uses space as a separator (e.g.kg m²/s²
)d
uses half-high dot (⋅
) as a separator (e.g.kg⋅m²/s²
)
Default formatting¶
To format quantity
values, the formatting facility uses units-format-spec
. If left empty,
the default formatting is applied. The same default formatting is also applied to the output streams.
This is why the following code lines produce the same output:
std::cout << "Distance: " << 123 * km << "\n";
std::cout << std::format("Distance: {}\n", 123 * km);
std::cout << std::format("Distance: {:%Q %q}\n", 123 * km);
Note
For some quantities the {:%Q %q}
format may provide a different output than the default one.
It will happen for example for:
- units for which
space_before_unit_symbol
customization point is set tofalse
, - quantities of dimension one with a unit one.
Controlling width, fill, and alignment¶
To control width, fill, and alignment, the C++ standard grammar tokens fill-and-align
and width
are being used, and they treat a quantity value and symbol as a contiguous text:
std::println("|{:0}|", 123 * m); // |123 m|
std::println("|{:10}|", 123 * m); // | 123 m|
std::println("|{:<10}|", 123 * m); // |123 m |
std::println("|{:>10}|", 123 * m); // | 123 m|
std::println("|{:^10}|", 123 * m); // | 123 m |
std::println("|{:*<10}|", 123 * m); // |123 m*****|
std::println("|{:*>10}|", 123 * m); // |*****123 m|
std::println("|{:*^10}|", 123 * m); // |**123 m***|
Note
std::println
is a C++23 facility. In case we
do not have access to C++23, we can obtain the same output with:
Quantity value, symbol, or both?¶
The user can easily decide to either print a whole quantity (value and symbol) or only its parts. Also, a custom style of quantity formatting might be applied:
std::println("{:%Q}", 123 * km); // 123
std::println("{:%q}", 123 * km); // km
std::println("{:%Q%q}", 123 * km); // 123km
Quantity value formatting¶
sign
token allows us to specify how the value's sign is being printed:
std::println("{0:%Q %q},{0:%+Q %q},{0:%-Q %q},{0:% Q %q}", 1 * m); // 1 m,+1 m,1 m, 1 m
std::println("{0:%Q %q},{0:%+Q %q},{0:%-Q %q},{0:% Q %q}", -1 * m); // -1 m,-1 m,-1 m,-1 m
where:
+
indicates that a sign should be used for both non-negative and negative numbers,-
indicates that a sign should be used for negative numbers and negative zero only (this is the default behavior),<space>
indicates that a leading space should be used for non-negative numbers other than negative zero, and a minus sign for negative numbers and negative zero.
precision
token is allowed only for floating-point representation types:
std::println("{:%.0Q %q}", 1.2345 * m); // 1 m
std::println("{:%.1Q %q}", 1.2345 * m); // 1.2 m
std::println("{:%.2Q %q}", 1.2345 * m); // 1.23 m
units-rep-type
specifies how a value of the representation type is being printed.
For integral types:
std::println("{:%bQ %q}", 42 * m); // 101010 m
std::println("{:%BQ %q}", 42 * m); // 101010 m
std::println("{:%dQ %q}", 42 * m); // 42 m
std::println("{:%oQ %q}", 42 * m); // 52 m
std::println("{:%xQ %q}", 42 * m); // 2a m
std::println("{:%XQ %q}", 42 * m); // 2A m
The above can be printed in an alternate version thanks to the #
token:
std::println("{:%#bQ %q}", 42 * m); // 0b101010 m
std::println("{:%#BQ %q}", 42 * m); // 0B101010 m
std::println("{:%#oQ %q}", 42 * m); // 052 m
std::println("{:%#xQ %q}", 42 * m); // 0x2a m
std::println("{:%#XQ %q}", 42 * m); // 0X2A m
For floating-point values, the units-rep-type
token works as follows:
std::println("{:%aQ %q}", 1.2345678 * m); // 0x1.3c0ca2a5b1d5dp+0 m
std::println("{:%.3aQ %q}", 1.2345678 * m); // 0x1.3c1p+0 m
std::println("{:%AQ %q}", 1.2345678 * m); // 0X1.3C0CA2A5B1D5DP+0 m
std::println("{:%.3AQ %q}", 1.2345678 * m); // 0X1.3C1P+0 m
std::println("{:%eQ %q}", 1.2345678 * m); // 1.234568e+00 m
std::println("{:%.3eQ %q}", 1.2345678 * m); // 1.235e+00 m
std::println("{:%EQ %q}", 1.2345678 * m); // 1.234568E+00 m
std::println("{:%.3EQ %q}", 1.2345678 * m); // 1.235E+00 m
std::println("{:%gQ %q}", 1.2345678 * m); // 1.23457 m
std::println("{:%gQ %q}", 1.2345678e8 * m); // 1.23457e+08 m
std::println("{:%.3gQ %q}", 1.2345678 * m); // 1.23 m
std::println("{:%.3gQ %q}", 1.2345678e8 * m); // 1.23e+08 m
std::println("{:%GQ %q}", 1.2345678 * m); // 1.23457 m
std::println("{:%GQ %q}", 1.2345678e8 * m); // 1.23457E+08 m
std::println("{:%.3GQ %q}", 1.2345678 * m); // 1.23 m
std::println("{:%.3GQ %q}", 1.2345678e8 * m); // 1.23E+08 m
Unit symbol formatting¶
Unit symbols of some quantities are specified to use Unicode signs by the
SI (e.g. Ω
symbol for the resistance quantity). The mp-units
library follows this by default. From the engineering point of view, sometimes Unicode text might
not be the best solution as terminals of many (especially embedded) devices are ASCII-only.
In such a case, the unit symbol can be forced to be printed using ASCII-only characters thanks to
units-text-encoding
token:
std::println("{}", 10 * si::ohm); // 10 Ω
std::println("{:%Q %Aq}", 10 * si::ohm); // 10 ohm
std::println("{}", 125 * us); // 125 µs
std::println("{:%Q %Aq}", 125 * us); // 125 us
std::println("{}", 9.8 * (m / s2)); // 9.8 m/s²
std::println("{:%Q %Aq}", 9.8 * (m / s2)); // 9.8 m/s^2
Additionally, both ISQ and SI leave some freedom on how to print unit symbols. This is why two additional tokens were introduced.
units-unit-symbol-solidus
specifies how the division of units should look like. By default,
/
will be used only when the denominator contains only one unit. However, with the a
or n
options, we can force the facility to print the /
character always (even when there are more units
in the denominator), or never in which case a parenthesis will be added to enclose all denominator
units.
std::println("{:%Q %q}", 1 * m / s); // 1 m/s
std::println("{:%Q %q}", 1 * kg / m / s2); // 1 kg m⁻¹ s⁻²
std::println("{:%Q %aq}", 1 * m / s); // 1 m/s
std::println("{:%Q %aq}", 1 * kg / m / s2); // 1 kg/(m s²)
std::println("{:%Q %nq}", 1 * m / s); // 1 m s⁻¹
std::println("{:%Q %nq}", 1 * kg / m / s2); // 1 kg m⁻¹ s⁻²
Also, there are a few options to separate the units being multiplied:
ISO 80000-1
When symbols for quantities are combined in a product of two or more quantities, this combination
is indicated in one of the following ways: ab
, a b
, a · b
, a × b
NOTE 1 In some fields, e.g., vector algebra, distinction is made between a ∙ b
and a × b
.
As of today, the mp-units library provides the support for a b
and a · b
only. Additionally,
we decided that the extraneous space in the latter case makes the result too verbose, so we decided
to just use the ·
symbol as a separator.
Note
Please let us know in case you require more formatting options here.
The units-unit-symbol-separator
token allows us to obtain the following outputs: