Skip to content

Simple and Typed Quantities

ISO defines a quantity as:

Quote

property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference

After that, it says:

Quote

A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such.

quantity class template

In the mp-units library, a quantity is represented with the following class template:

template<Reference auto R,
         RepresentationOf<get_quantity_spec(R).character> Rep = double>
class quantity;

The concept Reference is satisfied by a type that provides all the domain-specific metadata describing a quantity (besides the representation type and its value). Such a type can be either:

  • a unit with an associated quantity type (e.g., si::metre, m / s),
  • a reference type explicitly specifying the quantity type and its unit.

Important

All units in the SI system have an associated quantity type.

A reference type is implicitly created as a result of the following expression:

constexpr auto ref = isq::length[m];

The above example results in the following type reference<isq::length(), si::metre()> being instantiated.

As we have two alternative options that satisfy the Reference concept in the mp-units library, we also have two modes of dealing with quantities.

Simple quantities

The simple mode might be preferred by many developers. It is all about units. Quantities using this mode have shorter type identifiers, resulting in easier-to-understand error messages and better debugging experience.

Here is a simple example showing how to deal with such quantities:

#include <print>
import mp_units;

using namespace mp_units;

constexpr quantity<si::metre / si::second> avg_speed(quantity<si::metre> dist,
                                                     quantity<si::second> time)
{
  return dist / time;
}

int main()
{
  using namespace mp_units::si::unit_symbols;

  const quantity distance = 110 * km;
  const quantity duration = 2 * h;
  const quantity speed = avg_speed(distance, duration);

  std::println("A car driving {} in {} has an average speed of {::N[.4]} ({::N[.4]})",
               distance, duration, speed, speed.in(km / h));
}
#include <mp-units/format.h>
#include <mp-units/systems/si.h>
#include <print>

using namespace mp_units;

constexpr quantity<si::metre / si::second> avg_speed(quantity<si::metre> dist,
                                                     quantity<si::second> time)
{
  return dist / time;
}

int main()
{
  using namespace mp_units::si::unit_symbols;

  const quantity distance = 110 * km;
  const quantity duration = 2 * h;
  const quantity speed = avg_speed(distance, duration);

  std::println("A car driving {} in {} has an average speed of {::N[.4]} ({::N[.4]})",
               distance, duration, speed, speed.in(km / h));
}

The code above prints:

A car driving 110 km in 2 h has an average speed of 15.28 m/s (55 km/h)

User-provided unit wrappers

Sometimes it might be awkward to type some derived units:

quantity speed = 60 * km / h;

In case such a unit is used a lot in the project, a user can easily provide a nicely named wrapper for it with:

constexpr auto kmph = km / h;
quantity speed = 60 * kmph;

Easy-to-understand compilation error messages

In case a user makes an error in a quantity equation and the result of the calculation will not match the function return type, the compiler will detect such an issue at compile-time.

For example, in case we will make the following error:

constexpr quantity<si::metre / si::second> avg_speed(quantity<si::metre> dist,
                                                     quantity<si::second> time)
{
  return dist * time;  // (1)!
}
  1. Quantities multiplied (instead of divided) by accident.

the following compilation error message will be provided:

error: no viable conversion from returned value of type
       'quantity<mp_units::derived_unit<mp_units::si::metre, mp_units::si::second>{{{}}}, [...]>'
       to function return type
       'quantity<mp_units::derived_unit<mp_units::si::metre, mp_units::per<mp_units::si::second>>{{{}}}, [...]>'
   10 |   return dist * time;
      |          ^~~~~~~~~~~

Typed quantities

Simple mode is all about and just about units. In case we care about a specific quantity type, typed quantities should be preferred. With this mode, for example, we can specify if we deal with width, height, or radius and ensure we will not assign one to another by accident.

The previous example can be re-typed using typed quantities in the following way:

#include <print>
import mp_units;

using namespace mp_units;

constexpr quantity<isq::speed[si::metre / si::second]> avg_speed(quantity<isq::length[si::metre]> dist,
                                                                 quantity<isq::time[si::second]> time)
{
  return dist / time;
}

int main()
{
  using namespace mp_units::si::unit_symbols;

  const quantity distance = isq::distance(110 * km);
  const quantity duration = isq::time(2 * h);
  const quantity speed = avg_speed(distance, duration);

  std::println("A car driving {} in {} has an average speed of {::N[.4]} ({::N[.4]})",
               distance, duration, speed, speed.in(km / h));
}
#include <mp-units/format.h>
#include <mp-units/systems/isq.h>
#include <mp-units/systems/si.h>
#include <print>

using namespace mp_units;

constexpr quantity<isq::speed[si::metre / si::second]> avg_speed(quantity<isq::length[si::metre]> dist,
                                                                 quantity<isq::time[si::second]> time)
{
  return dist / time;
}

int main()
{
  using namespace mp_units::si::unit_symbols;

  const quantity distance = isq::distance(110 * km);
  const quantity duration = isq::time(2 * h);
  const quantity speed = avg_speed(distance, duration);

  std::println("A car driving {} in {} has an average speed of {::N[.4]} ({::N[.4]})",
               distance, duration, speed, speed.in(km / h));
}
A car driving 110 km in 2 h has an average speed of 15.28 m/s (55 km/h)

In case we will accidentally make the same calculation error as before, this time, we will get a bit longer error message, this time also containing information about the quantity type:

error: no viable conversion from returned value of type
       'quantity<reference<get_quantity_spec(metre{}) * struct time{{{}}}, metre{} * second{{}}>{}, [...]>'
       to function return type
       'quantity<reference<speed{}, derived_unit<metre, per<second>>{}>{}, [...]>'
   12 |   return dist * time;
      |          ^~~~~~~~~~~

As we can see above, the compilation error is longer but still relatively easy to understand.

Additional type safety with typed quantities

Based on the previous example, it might seem that typed quantities are not that useful, more to type and provide harder-to-understand error messages. It might be true in some cases, but there are scenarios where they offer additional level of safety.

Let's see another example:

#include <numbers>
import mp_units;

using namespace mp_units;

class StorageTank {
  quantity<square(si::metre)> base_;
  quantity<si::metre> height_;
public:
  constexpr StorageTank(const quantity<square(si::metre)>& base,
                        const quantity<si::metre>& height) :
    base_(base), height_(height)
  {
  }

  // ...
};

class CylindricalStorageTank : public StorageTank {
public:
  constexpr CylindricalStorageTank(const quantity<si::metre>& radius,
                                   const quantity<si::metre>& height) :
    StorageTank(std::numbers::pi * pow<2>(radius), height)
  {
  }
};

class RectangularStorageTank : public StorageTank {
public:
  constexpr RectangularStorageTank(const quantity<si::metre>& length,
                                   const quantity<si::metre>& width,
                                   const quantity<si::metre>& height) :
    StorageTank(length * width, height)
  {
  }
};

int main()
{
  using namespace mp_units::si::unit_symbols;
  auto tank = RectangularStorageTank(1'000 * mm, 500 * mm, 200 * mm);
  // ...
}
#include <numbers>
import mp_units;

using namespace mp_units;

// add a custom quantity type of kind isq::length
inline constexpr struct horizontal_length final :
    quantity_spec<isq::length> {} horizontal_length;

// add a custom derived quantity type of kind isq::area
// with a constrained quantity equation
inline constexpr struct horizontal_area final :
    quantity_spec<isq::area, horizontal_length * isq::width> {} horizontal_area;

class StorageTank {
  quantity<horizontal_area[square(si::metre)]> base_;
  quantity<isq::height[si::metre]> height_;
public:
  constexpr StorageTank(const quantity<horizontal_area[square(si::metre)]>& base,
                        const quantity<isq::height[si::metre]>& height) :
    base_(base), height_(height)
  {
  }

  // ...
};

class CylindricalStorageTank : public StorageTank {
public:
  constexpr CylindricalStorageTank(const quantity<isq::radius[si::metre]>& radius,
                                   const quantity<isq::height[si::metre]>& height) :
    StorageTank(quantity_cast<horizontal_area>(std::numbers::pi * pow<2>(radius)),
                height)
  {
  }
};

class RectangularStorageTank : public StorageTank {
public:
  constexpr RectangularStorageTank(const quantity<horizontal_length[si::metre]>& length,
                                   const quantity<isq::width[si::metre]>& width,
                                   const quantity<isq::height[si::metre]>& height) :
    StorageTank(length * width, height)
  {
  }
};

int main()
{
  using namespace mp_units::si::unit_symbols;
  auto tank = RectangularStorageTank(horizontal_length(1'000 * mm),
                                     isq::width(500 * mm),
                                     isq::height(200 * mm));
  // ...
}
#include <mp-units/math.h>
#include <mp-units/systems/si.h>
#include <numbers>

using namespace mp_units;

class StorageTank {
  quantity<square(si::metre)> base_;
  quantity<si::metre> height_;
public:
  constexpr StorageTank(const quantity<square(si::metre)>& base,
                        const quantity<si::metre>& height) :
    base_(base), height_(height)
  {
  }

  // ...
};

class CylindricalStorageTank : public StorageTank {
public:
  constexpr CylindricalStorageTank(const quantity<si::metre>& radius,
                                   const quantity<si::metre>& height) :
    StorageTank(std::numbers::pi * pow<2>(radius), height)
  {
  }
};

class RectangularStorageTank : public StorageTank {
public:
  constexpr RectangularStorageTank(const quantity<si::metre>& length,
                                   const quantity<si::metre>& width,
                                   const quantity<si::metre>& height) :
    StorageTank(length * width, height)
  {
  }
};

int main()
{
  using namespace mp_units::si::unit_symbols;
  auto tank = RectangularStorageTank(1'000 * mm, 500 * mm, 200 * mm);
  // ...
}
#include <mp-units/math.h>
#include <mp-units/systems/isq.h>
#include <mp-units/systems/si.h>
#include <numbers>

using namespace mp_units;

// add a custom quantity type of kind isq::length
inline constexpr struct horizontal_length final :
    quantity_spec<isq::length> {} horizontal_length;

// add a custom derived quantity type of kind isq::area
// with a constrained quantity equation
inline constexpr struct horizontal_area final :
    quantity_spec<isq::area, horizontal_length * isq::width> {} horizontal_area;

class StorageTank {
  quantity<horizontal_area[square(si::metre)]> base_;
  quantity<isq::height[si::metre]> height_;
public:
  constexpr StorageTank(const quantity<horizontal_area[square(si::metre)]>& base,
                        const quantity<isq::height[si::metre]>& height) :
    base_(base), height_(height)
  {
  }

  // ...
};

class CylindricalStorageTank : public StorageTank {
public:
  constexpr CylindricalStorageTank(const quantity<isq::radius[si::metre]>& radius,
                                   const quantity<isq::height[si::metre]>& height) :
    StorageTank(quantity_cast<horizontal_area>(std::numbers::pi * pow<2>(radius)),
                height)
  {
  }
};

class RectangularStorageTank : public StorageTank {
public:
  constexpr RectangularStorageTank(const quantity<horizontal_length[si::metre]>& length,
                                   const quantity<isq::width[si::metre]>& width,
                                   const quantity<isq::height[si::metre]>& height) :
    StorageTank(length * width, height)
  {
  }
};

int main()
{
  using namespace mp_units::si::unit_symbols;
  auto tank = RectangularStorageTank(horizontal_length(1'000 * mm),
                                     isq::width(500 * mm),
                                     isq::height(200 * mm));
  // ...
}

In the above example, the highlighted call doesn't look that safe anymore in the case of simple quantities, right? Suppose someone, either by mistake or due to some refactoring, will call the function with an invalid order of arguments. In that case, the program will compile fine but not work as expected.

Let's see what will happen if we reorder the arguments in the case of typed quantities:

auto tank = RectangularStorageTank(horizontal_length(1'000 * mm),
                                   isq::height(200 * mm),
                                   isq::width(500 * mm));

This time, a compiler provides the following compilation error:

<source>:53:15: error: no matching constructor for initialization of 'RectangularStorageTank'
   53 |   auto tank = RectangularStorageTank(horizontal_length(1'000 * mm),
      |               ^                      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   54 |                                      isq::height(200 * mm),
      |                                      ~~~~~~~~~~~~~~~~~~~~~~
   55 |                                      isq::width(500 * mm));
      |                                      ~~~~~~~~~~~~~~~~~~~~
<source>:43:13: note: candidate constructor not viable: no known conversion from
                'quantity<mp_units::reference<mp_units::isq::height{{{{{}}}}},
                                              mp_units::si::milli_<mp_units::si::metre{{}}>{{{{}}}}>{}, int>' to
                'const quantity<reference<width{}, metre{}>{}, (default) double>' for 2nd argument
   43 |   constexpr RectangularStorageTank(const quantity<horizontal_length[m]>& length,
      |             ^
   44 |                                    const quantity<isq::width[m]>& width,
      |                                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

What about derived quantities? In the above example, you probably noticed that we also defined a custom horizontal_area quantity of kind isq::area. This quantity has the unique property of being implicitly constructible only from the result of the multiplication of quantities of horizontal_area and isq::width or the ones that implicitly convert to them.

Based on the above error message, we already know that a quantity of isq::height is not implicitly constructible to the quantity of isq::width. This property is transitively passed to derived quantities using them. If by accident, we will try to create a StorageTank base class in the following way:

class RectangularStorageTank : public StorageTank {
public:
  constexpr RectangularStorageTank(const quantity<horizontal_length[m]>& length,
                                   const quantity<isq::width[m]>& width,
                                   const quantity<isq::height[m]>& height) :
    StorageTank(length * height, height)
  {
  }
};

we will again get a compilation error message like this one:

error: no matching constructor for initialization of 'StorageTank'
   46 |     StorageTank(length * height, height)
      |     ^           ~~~~~~~~~~~~~~~~~~~~~~~
<source>:22:13: note: candidate constructor not viable: no known conversion from
                'quantity<mp_units::reference<mp_units::derived_quantity_spec<horizontal_length, mp_units::isq::height>{{}, {{}}},
                                              mp_units::derived_unit<mp_units::power<mp_units::si::metre, 2>>{{{}}}>{}, [...]>' to
                'const quantity<reference<horizontal_area{}, derived_unit<power<metre, 2>>{}>{}, [...]>' for 1st argument
   22 |   constexpr StorageTank(const quantity<horizontal_area[m2]>& base,
      |             ^           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tip

If you need to use various quantities of the same kind, consider using typed quantities to bring an additional level of safety to your project.

quantity_cast() to force unsafe conversions

Did you notice the quantity_cast() usage in the other child class?

class CylindricalStorageTank : public StorageTank {
public:
  constexpr CylindricalStorageTank(const quantity<isq::radius[m]>& radius,
                                   const quantity<isq::height[m]>& height) :
    StorageTank(quantity_cast<horizontal_area>(std::numbers::pi * pow<2>(radius)),
                height)
  {
  }
};

As isq::radius is not convertible to horizontal_length, the derived quantity of pow<2>(radius) can't be converted to horizontal_area as well. It would be unsafe to allow such a conversion as not all of the circles lie flat on the ground, right?

In such a case, the user has to explicitly force such an unsafe conversion with the help of a quantity_cast(). This function name is easy to spot in code reviews or while searching the project for problems if something goes sideways. In case of unexpected quantities-related issues, this should be the first function to look for.

Tip

Do not overuse quantity_cast(). Use it only when necessary and ensure that the requested conversion is exactly what you need in this case.

Which mode should I use in my project?

We have good news for you if you wonder which mode you should choose for your project. Simple and typed quantity modes can be freely mixed with each other. When you use different quantities of the same kind (e.g., radius, wavelength, altitude, ...), you should probably reach for typed quantities to bring additional safety for those cases. Otherwise, just use simple mode for the remaining quantities. The mp-units library will do its best to protect your project based on the information provided.

Tip

You can easily mix simple and typed quantities in your project.